Mitochondrial aldehyde dehydrogenase (ALDH2) protects against streptozotocin-induced diabetic cardiomyopathy: role of GSK3β and mitochondrial function

نویسندگان

  • Yingmei Zhang
  • Sara A Babcock
  • Nan Hu
  • Jacalyn R Maris
  • Haichang Wang
  • Jun Ren
چکیده

BACKGROUND Mitochondrial aldehyde dehydrogenase (ALDH2) displays some promise in the protection against cardiovascular diseases although its role in diabetes has not been elucidated. METHODS This study was designed to evaluate the impact of ALDH2 on streptozotocin-induced diabetic cardiomyopathy. Friendly virus B(FVB) and ALDH2 transgenic mice were treated with streptozotocin (intraperitoneal injection of 200 mg/kg) to induce diabetes. RESULTS Echocardiographic evaluation revealed reduced fractional shortening, increased end-systolic and -diastolic diameter, and decreased wall thickness in streptozotocin-treated FVB mice. Streptozotocin led to a reduced respiratory exchange ratio; myocardial apoptosis and mitochondrial damage; cardiomyocyte contractile and intracellular Ca2+ defects, including depressed peak shortening and maximal velocity of shortening and relengthening; prolonged duration of shortening and relengthening; and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of Akt, glycogen synthase kinase-3β and Foxo3a (but not mammalian target of rapamycin), elevated PTEN phosphorylation and downregulated expression of mitochondrial proteins, peroxisome proliferator-activated receptor γ coactivator 1α and UCP-2. Intriguingly, ALDH2 attenuated or ablated streptozotocin-induced echocardiographic, mitochondrial, apoptotic and myocardial contractile and intracellular Ca2+ anomalies as well as changes in the phosphorylation of Akt, glycogen synthase kinase-3β, Foxo3a and phosphatase and tensin homologue on chromosome ten, despite persistent hyperglycemia and a low respiratory exchange ratio. In vitro data revealed that the ALDH2 activator Alda-1 and glycogen synthase kinase-3β inhibition protected against high glucose-induced mitochondrial and mechanical anomalies, the effect of which was cancelled by mitochondrial uncoupling. CONCLUSIONS In summary, our data revealed that ALDH2 acted against diabetes-induced cardiac contractile and intracellular Ca2+ dysregulation, possibly through regulation of apoptosis, glycogen synthase kinase-3β activation and mitochondrial function independent of the global metabolic profile.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats.

Left ventricular (LV) dysfunction is a common comorbidity in diabetic patients, although the molecular mechanisms underlying this cardiomyopathic feature are not completely understood. Aldehyde dehydrogenase 2 (ALDH2) has been considered a key cardioprotective enzyme susceptible to oxidative inactivation. We hypothesized that hyperglycemia-induced oxidative stress would influence ALDH2 activity...

متن کامل

Mitochondrial aldehyde dehydrogenase activity protects against lipopolysaccharide‑induced cardiac dysfunction in rats.

Myocardial dysfunction in sepsis is associated with an increased risk of mortality. The mitochondrial aldehyde dehydrogenase (ALDH2) enzyme is crucial for protecting the heart from ischemic injury. The aim of the present study was to determine the role of ALDH2 in cardiac dysfunction induced by lipopolysaccharide (LPS). Male rats were treated intraperitoneally with LPS, and their stroke volume ...

متن کامل

Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling.

AIMS We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model. METHODS AND RESULTS We showed that a 6-week treatment of myocardial inf...

متن کامل

Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1α

Insulin resistance contributes to the high prevalence of type 2 diabetes mellitus, leading to cardiac anomalies. Emerging evidence depicts a pivotal role for mitochondrial injury in oxidative metabolism and insulin resistance. Mitochondrial aldehyde dehydrogenase (ALDH2) is one of metabolic enzymes detoxifying aldehydes although its role in insulin resistance remains elusive. This study was des...

متن کامل

The Role of Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) in Neuropathology and Neurodegeneration.

Aldehydes-induced toxicity has been implicated in many neurodegenerative diseases. Exposure to reactive aldehydes from (1) alcohol and food metabolism; (2) environmental pollutants, including car, factory exhausts, smog, pesticides, herbicides; (3) metabolism of neurotransmitters, amino acids and (4) lipid peroxidation of biological membrane from excessive ROS, all contribute to 'aldehydic load...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2012